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Introduction:

unifying concept PV mixing & ZF formation
. dq
* PV conservation —=
GFD: Plasma:
Quasi-geostrophic system Hasegawa-Wakatani system
q=V-p+By g=n-V¢
‘oo T
relative  planetary density ion vorticity
vorticity vorticity (guiding center) (polarization)
Physics: Ay — A(V21/J) —> ZF! Physics: Ar — An — A(V2¢) > ZF!

e Zonal Flow formation

Taylor’s identity (7,G)= —ai@xﬁy> - PV flux fundamental to ZF formation
y



Introduction:
physical systems

| turbulence | quasi-geostrophic | drift-wave

> force

velocity

linear waves
>  conserved PV
> inhomogeneity
- characteristic scale
> fast frequency
turbulence
Reynolds number

> zonal flows

role of zonal flows

Coriolis

geostrophic

Rossby waves
q=Vy+py
p
L,~10°m
f=10"s"
usually strongly driven
R, >>1
Jets, zonal bands

transport barriers

Lorentz

magnetic energy

drift waves
g=n-V'¢
vn, VT
P, =107 m
w, ~10°s™

not far from marginal
R, ~ 10-10?
sheared E x B flows

L-H transition



PV flux I
General Structure NOn'pertu rbative approaChes

— PV mixing in space is essential in ZF generation.

Taylor identity: <ﬁyV2q;> =-d, <ﬁyﬁx>
vorticity flux ~ Reynolds force

Key:
How represent
inhomogeneous

General structure of PV flux?

—relaxation principles!

non-perturb model 1: use selective decay principle

most treatment of ZF: What form must the PV flux have so as to

-- perturbation theory dissipate enstrophy while conserving energy?

-- modulational instability
(test shear + gas of waves) non-perturb model 2: use joint reflection symmetry

~ linear theor
Y What form must the PV flux have so as to

-> physics of evolved PV mixing? satisfy the joint reflection symmetry principle
-> something more general? for PV transport/mixing?




non-perturb model 1

General principle: selective decay

* 2D turbulence conservation | | N\
of energy and potential \ \\ NS
enstrophy /" inverse energy

A cascading
—> dual cascade E(K) \\J &J’ Q-
- Minimum enstrophy state o

\ forward enstrophy
\ cascading
e eddy turnover rate and waves

+ ZF” ueddyn
Rossby wave frequency
mismatch are comparable

|
a |
—+u Vw+pv=0 ,
|
@ Rhines ﬁ
scale v
forcing
- Rhines scale L; \f k([|k
[5 wave wave

kll
zonal flow



non-perturb model 1

Using selective decay for flux

minimum enstrophy Taylor relaxation
relaxation (J.B. Taylor, 1974)
(Bretherton & Haidvogel 1976)
turbulence 2D hydro 3D MHD
conserved q.uantlty total kinetic energy global magnetic helicity
dual (constraint)
cascade| dissipated quantity fluctuation potential

magnetic energy

(minimized) enstrophy
_ minimum enstrophy state Taylor state
final state
flow structure emergent force free B field configuration
0 0
structural approach —Q<0=T, =T, —E, <0=1,
ot ot

* flux? what can be said about dynamics?

—> structural approach (this work): What form must the PV flux have so as to
dissipate enstrophy while conserving energy?

General principle based on general physical ideas = useful for dynamical model



non-perturb model 1

PV flux
- PV conservation

mean field PV: @J,ay <qu> - Voai <q> Key Point:
ot e form of PV flux I, which
I, - mean field PV flux dissipates enstrophy &

. conserves ener
selective decay gy

— energy conserved E=f(ay<2¢>)

L fonr.faor,  4rs 20

- enstrophy minimized Q=f@7>

B [l@ar,--f ay[ay <">)FE

9,(9)
R May(ay@)) general form

0Q 9,{(q)
af<0i@=lwy(ay<jﬁ>) - o (p) 9,{¢) of PV flux

Y
parameter TBD <Ux> 8



non-perturb model 1

Structure of PV flux

—0,|ud

(a <q>)] I
<v )’ / wy)| T wy”
diffusion parameter calculated by
perturbation theory, numerics...

<qr>a <Q> 0,4a)

<v>]

dlffu5|on and hyper diffusion of PV

<--> usual story : Fick’s diffusion

relaxed state:

Homogenization of < ) —> allows staircase

(v,)

(v
9,(a)

characteristic scale /, =

¢>{ :zonal flow growth

¢ </ :zonal flow damping
(hyper viscosity-dominated)

4 0 N
Rhines scale LR~\/%

J

\

¢ > L, : wave-dominated

¢ < L, : eddy-dominated
/




non-perturb model 1

PV staircase

9,(q) N PV gradient large

relaxed state: homogenization of
(v,) where zonal flow large

- Zonal flows track the PV gradient - PV staircase

(9)

<vx> w
* Highly structured profile of the staircase is reconciled with the
homogenization or mixing process required to produce it.

e Staircase may arise naturally as a consequence of minimum
enstrophy relaxation.



non-perturb model 1

What sets the “minimum enstrophy”

* Decay drives relaxation. The relaxation rate can be derived by linear
perturbation theory about the minimum enstrophy state

(q)=q,,(y)+0q(y,1) . M(k“ FAAKC 437 82 (K + x))
(9=, (3)+6¢(y.1) (v,) (v,)
8.q, =10, . u(— 49,k +10g,k) sq;/zJ
0q(y,t) = 0q, eXp( — it + 1ky) (v,) (v,)
>0
relaxation

 The condition of relaxation (modes are damped):

8q. 8q.
Vu >0 = Kk’ >#—3A = <qu2 >3A | > Relates 613,, with ZF and scale factor
31
= <vx ’ < .y ZF can’t grow arbitrarily large
4

. < 2 the ‘minimum enstrophy’ of relaxation,
>(v,) 34
related to scale
11



non-perturb model 1

Role of turbulence spreading

@@

 Turbulence spreading: tendency of turbulence
to self-scatter and entrain stable regime % —

* Turbulence spreading is closely related to PV mixing because the
transport/mixing of turbulence intensity has influence on Reynolds
stresses and so on flow dynamics.

* PV mixing is related to turbulence spreading
aE

L fon-—fuor. <002

* The effective spreading flux of turbulence kinetic energy
! ,9) ,{9)
I',=- Fq<vx>dy=— —0,|u ( ) <U >dy uo, ( )

J o oy <

v,)
—~the gradient of the 0, (q)/<v,), drives spreading

- the spreading flux vanishes when 0, £a>/{v,» is homogenized

QQ



non-perturb model 1

Discussion

* PV mixing «»> forward enstrophy cascade <> hyper-viscosity

- How to reconcile effective negative viscosity with the picture of
diffusive mixing of PV in real space?

* A possible explanation of up-gradient transport of PV due to turbulence

spreading
PV mixing Turbulence spreading
larger < g > - /“\)/3 Weaker turbulence
B e — . )
intensity (enstrophy)
! A
I
rq | : rQ
7 |

smaller <g > ' Stronger turbulence
q — @ intensity (enstrophy)

13



non-perturb model 2
PV-avalanche model — beyond diffusion

—— g(y,t) : PV profile
- = g,(y) :self-organized state
dq =q-q, : deviation
I'[6q] : PV flux

\

mixing
w \\ [[6g] <=
0g <0

More general
form of PV flux

<
pulse .

propagation

>
e avalanching: tendency of excitation to propagate in space via local gradient change

» Joint-reflection symmetry: I [8q] invariant undery = -y and 6q =2 -6q

Key Point: )
form of PV flux which satisfies |> T'[8q]= Eal (6q) + E[J’m (8y(5q)m + Eyn (aiéq)n +...
[ m n

joint-reflection symmetry

* large-scale properties : higher-order derivatives neglected
small deviations : higher-order terms in 6q neglected

general form

- Simplest approximation:| I'[ ¢ | = %(5@2 + 0,0q +Y9,0q £V fl ”
0 ux




non-perturb model 2

O
F[éq] = 9,0q + )/aiéq
Kuramoto-Sivashinsky

e PV equation: 9,09 +c(0qd 6q ¥ Bo’Sq +yd'6q =0 type equation
\ J J

diffusion and hyper diffusion of 6q

Non-linear convection of 6q

* Avalanche-like transport is triggered by deviation of PV gradient
—> PV deviation implicitly related to the local PV gradient 0g —d,q

—> transport coefficients (functions of 6q) related to the gradient D(6q) — D(d,q)

- gradient-dependent effective diffusion I', ~-D(9d,4)d,g —=(=D(0q)dq

— Convective component of the PV flux can be related to a gradient-
dependent effective diffusion

[[dq] ~D(8¢)dq

D(6q) — D,dq

15



PV flux 11
Setting the Coefficients

General structure of PV flux
- relaxation principles

Perturbation theory

Transport coefficients of PV flux

— perturbation theory

(only analytical solution)

 The evolution of perturbation (seed ZF) as a way to look at PV transport

Seed ZF

Modulation
(nonlocal)

v

-}

l

XY

Inverse cascade/
> PV mixing (local)

Fluctuations
(broad spectrum)

Modulational instability
(large scale pumping)
requires small scale PV mixing

16



perturbation theory 1

~ broadband Revisiting modulational instability

ZF evolution determined by Reynolds force

Ty, == (5,6,)=L S,

X X 4
ot GL/—J 9y k< k
VOFIUCIW N, = k2|1pk|2/wk is wave action density, for Rossby
ux

wave and drift wave, it is proportional to the
enstrophy density. N, is determined by WKE:

&+U -VN +dw, N = Ik, 0V,) N,
ot dy 0ok,
=» Turbulent vorticity flux derived ) N
0
— 0V, =d’k(q) OV,
v, =ity }; do, 0N, ar 1
(a) -q- U) +(5a)k ak k(q) # const
(\f) =» scale dependence of PV flux
K(q
g: ZF wavenumber =>» non-Fickian turbulent PV flux

G J

17



perturbation theory 1

 Asimple model from which to view « (g):

— Defining MFP of wave packets as the _
- - :__:Engy
critical scale ¢ ' = Ug5wk1

— keeping next order term in expansion A

of response

2
qg'>>q' = O (l_q_z)

(qu,)’ +0w; dw,\ ¢
=>» zonal growth evolution: 2
8,0V, = Da*8V, - HO*OV, J D- 2 X a’jkk @ <0
=¥ negative viscosity and H=-S¢" k’ 4(kyéwo 0
positive hyper-viscosity =" dwk* glé/

€®) Transport coefficients (viscosity and hyper-viscosity) for relaxation models:

[<q>a RO <q>]
(o, 2.)

(v, ) .

(8]
['[6q] = —(8q)* + BO,dq + vD34q,
P qa<¢> [dq] = 5 (59)" + BB,0q + 9,64




perturbation theory 1

Discussion of D and H

Roles of negative viscosity and positive hyper-viscosity (Real space)

—5V Do 6V Ha“av

81‘

= ) %&/jdzx =D [(8,0v,) d*x~H [(8°0V,) d*x

D<0=y, ,>0
H>0=vy, ,<0

ZF growth (Pumper D)

ZF suppression (Damper H)

=» D, H as model of spatial PV flux beyond over-simplified negative

viscosity

D = Hq’ sets the cut-off scale

N

G, =

Energy transferred
to large scale ZF

J

.

Minimum enstrophy model

28],

" 8<¢>

(v,)
0,(q)

J

¢>/{_ : ZFenergy growth -> D process dominates at large scale

¢ </l : ZF energy damping -> H process dominates at small scale

19



perturbation theory 2

— narrowband Parametric instability
pseudo-fluid plasma, fluid
elements wave-packets  charged particles (species «)
distribution function Ni(k, wg) fo(r,v,t)
mean free path [vg|/0wr 1/n,o
density n” = [ Nidk ng = | fadv
momentum P" = [ kNgdk Po = | MV fodv
. w | vaNkdk _ Jvfadv  p,
velocity VY = [ Nudk U = [fadv — Mana

Pei-Chun Hsu and P. H. Diamond, Phys. Plasmas, 22, 032314 (2015)
20



perturbation theory 2

<1~) v > fvgykxN d’k = V.'P" pseudo-momentum flux

e ZF evolution:

gy 7
. . WKE\v, d’k )
* pseudo-fluid evolution: f( )Ugy f2ﬂk 1_4k k| [N, di
nw it
;> iVyW+VyWiVyW =—a<vx ’ inviscid Burgers’eq.
ot dy source: zonal shear

__________________________________________________________

2( 4k2) -- Instability (Y, real) - k> > 3ky2

- Vg & |q| —> convective instability

& Convective transport coefficients Q 5 3
for PV-avalanche model: ‘ ['[q] {5(5Q)>+ B0,0q + 70,04, 21




PV flux gonvective] inscous P h,z'per-viscogs coefficients
Min. enstrophy relaxation ) .
(non-perturb.)
PV-avalanche relaxation ) . .
Modulational instability . . D;(< 0),H;(> 0)
(perturbative)
Parametric instability . Yo(~ |q|)
. o(v, 1 q)9,(q) 9,(q
* Minimum enstrophy < >=Fq= d, | a2, 2>+ {7
ot 9,(¢) (9,(9))  9,(9)
\ )\

e PV-avalanche

e Modulational instab. :

* Parametric instab. Vg =

I'[og]= g(cSq)2 + 0,0q +v96q

J \ J

e\

0.0V. =—qg’DSV_+q " HOV.
\ J \ J
4k’
quz«i ol (-]
J

22



l11) Multi-scale shearing effects

Generic problem: interaction between

Motivation: coexistence of mean shear .
and zonal flow shear (different roles) different scale shearing fields
- L-H transition, the solar tachocline R mearyshear
N ——

— —— —— i — i — —— — — -

Limit-Cycle
zonal flow

L-Mode | Oscillations (LCO) H-Maode

. ] 6
227 PRSSEEE
IF | LCFS R
- 3
£
c 225 0
Vexe
223 (km/s)
-6

Important issue: how mean shear affects the PV flux and ZF generation

Sheanng
Modulational
Instablllty

Free(zpaegigeynfs)urce\\ Shearing Dﬁiﬁf@f}‘k‘)’” Pei-Chun Hsu and P. H. Diamond,
“ay Phys. Plasmas, 22, 022306, (2015)
“Na
23

Mean Shears



Modulational instab. w/ mean shear

k. k
Momentum flux -> Reynolds stress -> wave action <v.v,>=

e mean shearin WKE: atN N kk N +5Cl) N k (SV '8 N
(shearing rate (1) \

decrease mean shear Non- Imear Seed ZF
v, xQ? —9 <V =Q  diffusion
* Ray trajectory refraction: y[ K
dk, k
—=——(a)+kV) V. =(V)+V,
dt ady
dy _2Bkk,

wave trajectory is distorted by
surrounding mean shears

Z Ugy = X
k(1)=k,(0)+kQ 4 smaller scale

~ _B1 1
YO=YO0)+el, eO= gl

¢ excursion inhibited




Modulational instab. w/ mean shear

e characteristic method (shearing frame)
- s

| fram [ g y() i t] ON, +v 9N, -k (V ,8N+ NV, =k OV N,
original frame v '0
& y=y(0)+e(?) vk \ & ¢ x< x> “ 9 " AR

cancel in shearing frame

x <

shearing frame [
- Solving Green’s function in shearing frame

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart
x your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again

1/3
3 — Mean shear reduces ZF growth, PV flux ~Q2/3

5&,—6 QZ> — scaling of PV flux in strong mean shear

25




Summary

Inhomogeneous PV mixing is identified as the fundamental mechanism for ZF
formation. This study offered new approaches to calculating spatial flux of PV.

The general structure of PV flux is studied by two non-perturbative relaxation
models. In selective decay model, PV flux contains diffusive and hyper-
diffusive terms. In PV-avalanche model, PV flux contains another convective
term, which can be generalized to an effective diffusive transport.

The transport coefficients are derived using perturbation theory. In
modulational instability analysis for a broadband spectrum, a negative
viscosity and a positive hyper-viscosity, which represents ZF saturation
mechanism, are derived. In parametric instability analysis for a narrow
spectrum, a convective transport coefficient is obtained.

Important issues addressed in our models includes PV staircase, turbulence
spreading, avalanche-like transport, characteristic scales.

The effect of the mean shear on ZF formation is studied. ZF growth rate and
the PV flux are shown to decreases with mean shearing rate. Framework of
PV transport for systems with multi-scale shearing fields is established.
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