

Potential Vorticity (PV) Dynamics and Models of Zonal Flow Formation

Pei-Chun Hsu, Patrick Diamond

CASS, UCSD

APS-DPP, Nov 16-20, 2015

Outline

- I. Introduction
- II. Non-perturbative MFT of turbulent relaxation and PV transport
 - structure of PV flux (1)(2)
 - i. Selective decay model: minimum enstrophy principle
 - ii. PV-avalanche model: symmetry principles
- II. Perturbation theory of PV flux
 - transport coefficients (1)
 - i. Modulational instability
 - ii. Parametric instability
- III. Zonal flow formation in the presence of ambient mean shear (3)
- IV. Summary
 - (1) Pei-Chun Hsu and P. H. Diamond, Phys. Plasmas, 22, 032314 (2015)
 - (2) Pei-Chun Hsu, P. H. Diamond, and S. M. Tobias, Phys. Rev. E, 91, 053024 (2015)
 - (3) Pei-Chun Hsu and P. H. Diamond, Phys. Plasmas, 22, 022306, (2015)

Introduction: unifying concept

PV mixing & ZF formation

• Zonal Flow formation

Taylor's identity $\langle \tilde{v}_y \tilde{q} \rangle = -\frac{\partial}{\partial y} \langle \tilde{v}_x \tilde{v}_y \rangle \rightarrow PV$ flux fundamental to ZF formation

Introduction: physical systems

	turbulence	quasi-geostrophic	drift-wave
>	force	Coriolis	Lorentz
	velocity	geostrophic	magnetic energy
	linear waves	Rossby waves	drift waves
→	conserved PV	$q = \nabla^2 \psi + \beta y$	$q = n - \nabla^2 \phi$
>	inhomogeneity	eta	$\nabla n, \ \nabla T$
>	characteristic scale	$L_D \approx 10^6 m$	$\rho_s \approx 10^{-3} m$
→	fast frequency	$f \approx 10^{-2} s^{-1}$	$\omega_{ci} \approx 10^8 s^{-1}$
	turbulence	usually strongly driven	not far from marginal
	Reynolds number	R _e >>1	$R_{e} \simeq 10-10^{2}$
→	zonal flows	Jets, zonal bands	sheared E x B flows
	role of zonal flows	transport barriers	L-H transition

PV flux I General Structure

Non-perturbative approaches

-> physics of evolved PV mixing?-> something more general?

What form must the PV flux have so as to satisfy the joint reflection symmetry principle for PV transport/mixing?

General principle: selective decay

- 2D turbulence conservation of energy and potential enstrophy
- \rightarrow dual cascade
- \rightarrow Minimum enstrophy state
- eddy turnover rate and Rossby wave frequency mismatch are comparable

Using selective decay for flux

		minimum enstrophy relaxation (Bretherton & Haidvogel 1976)	nalogy (J.B. Taylor, 1974)
	turbulence	2D hydro	3D MHD
dual (conserved quantity (constraint)	total kinetic energy	global magnetic helicity
cascade	dissipated quantity (minimized)	fluctuation potential enstrophy	magnetic energy
	final state	minimum enstrophy state	Taylor state
		flow structure emergent	force free B field configuration
	structural approach	$\frac{\partial}{\partial t} \Omega < 0 \Longrightarrow \Gamma_E \Longrightarrow \Gamma_q$	$\frac{\partial}{\partial t} E_{_M} < 0 \Longrightarrow \Gamma_{_H}$

• flux? what can be said about dynamics?

→ structural approach (this work): What form must the PV flux have so as to dissipate enstrophy while conserving energy?

General principle based on general physical ideas \rightarrow useful for dynamical model $_{_7}$

<u>PV flux</u>

 \rightarrow PV conservation mean field PV: $\frac{\partial \langle q \rangle}{\partial t} + \partial_y \langle v_y q \rangle = v_0 \partial_y^2 \langle q \rangle$ Key Point: form of PV flux Γ_{α} which Γ_a : mean field PV flux dissipates enstrophy & conserves energy selective decay → energy conserved $E = \int \frac{\left(\partial_y \langle \phi \rangle\right)^2}{2}$ → enstrophy minimized $\Omega = \int \frac{\langle q \rangle^2}{2}$ $\frac{\partial \Omega}{\partial t} = -\int \langle q \rangle \partial_y \Gamma_q = -\int \partial_y \left(\frac{\partial_y \langle q \rangle}{\partial_y \langle \phi \rangle} \right) \Gamma_E$ $\frac{\partial \Omega}{\partial t} < 0 \Rightarrow \Gamma_{E} = \mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle} \right) \Rightarrow \Gamma_{q} = \frac{1}{\partial_{y} \langle \phi \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\partial_{y} \langle \phi \rangle} \right) \right] \qquad \text{general form} \\ \text{of PV flux} \end{cases}$

Structure of PV flux

$$\Gamma_{q} = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right] = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \left(\frac{\langle q \rangle \partial_{y} \langle q \rangle}{\langle v_{x} \rangle^{2}} + \frac{\partial_{y}^{2} \langle q \rangle}{\langle v_{x} \rangle} \right) \right]$$

diffusion parameter calculated by perturbation theory, numerics...

diffusion and hyper diffusion of PV

<--> usual story : Fick's diffusion

relaxed state:
Homogenization of
$$\frac{\partial_y \langle q \rangle}{\langle v_x \rangle} \rightarrow$$
 allows staircase

PV staircase

relaxed state: homogenization of $\frac{\partial_y \langle q \rangle}{\langle v \rangle} \rightarrow \frac{PV \text{ gradient large}}{W \text{ where zonal flow large}}$

 \rightarrow Zonal flows track the PV gradient \rightarrow PV staircase

- Highly structured profile of the staircase is reconciled with the homogenization or mixing process required to produce it.
- Staircase may arise naturally as a consequence of minimum enstrophy relaxation.

What sets the "minimum enstrophy"

• Decay drives relaxation. The relaxation rate can be derived by linear perturbation theory about the minimum enstrophy state

$$\begin{cases} \langle q \rangle = q_m(y) + \delta q(y,t) \\ \langle \phi \rangle = \phi_m(y) + \delta \phi(y,t) \\ \partial_y q_m = \lambda \partial_y \phi_m \\ \delta q(y,t) = \delta q_0 \exp(-\gamma_{rel}t - i\omega t + iky) \\ > 0 \end{cases}$$

$$\begin{aligned} & \gamma_{rel} = \mu \left(\frac{k^4 + 4\lambda k^2 + 3\lambda^2}{\langle v_x \rangle^2} - \frac{8q_m^2(k^2 + \lambda)}{\langle v_x \rangle^4} \right) \\ \omega_k = \mu \left(-\frac{4q_m k^3 + 10q_m k\lambda}{\langle v_x \rangle^3} - \frac{8q_m^3 k}{\langle v_x \rangle^5} \right) \\ \approx 0 \end{aligned}$$

$$\begin{aligned} & relaxation \end{aligned}$$

• The condition of relaxation (modes are damped):

$$\gamma_{rel} > 0 \implies k^2 > \frac{8q_m^2}{\langle v_x \rangle^2} - 3\lambda \implies \frac{8q_m^2}{\langle v_x \rangle^2} > 3\lambda \implies \forall \text{Relates } q_m^2 \text{ with ZF and scale factor}$$
$$\implies \langle v_x \rangle^2 < \frac{3\lambda}{8q_m^2} \qquad \text{ZF can't grow arbitrarily large}$$
$$\implies 8 q_m^2 > \langle v_x \rangle^2 3\lambda \qquad \text{the 'minimum enstrophy' of relaxation}$$
related to scale

Role of turbulence spreading

- Turbulence spreading: tendency of turbulence to self-scatter and entrain stable regime
- Turbulence spreading is closely related to PV mixing because the transport/mixing of turbulence intensity has influence on Reynolds stresses and so on flow dynamics.
- PV mixing is related to turbulence spreading $\frac{\partial E}{\partial t} = \int \langle \phi \rangle \partial_y \Gamma_q = -\int \partial_y \langle \phi \rangle \Gamma_q \qquad \Rightarrow \Gamma_q = \frac{\partial \langle \Gamma_E}{\partial_y \langle \phi \rangle}$
- The effective spreading flux of turbulence kinetic energy

$$\Gamma_{E} = -\int \Gamma_{q} \langle v_{x} \rangle dy = -\int \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right] \langle v_{x} \rangle dy = \mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right)$$

 \rightarrow the gradient of the $\partial_v \langle q \rangle / \langle v_x \rangle$, drives spreading

 \rightarrow the spreading flux vanishes when $\partial_v \langle q \rangle / \langle v_x \rangle$ is homogenized

Discussion

- PV mixing ↔ forward enstrophy cascade ↔ hyper-viscosity
 → How to reconcile effective negative viscosity with the picture of diffusive mixing of PV in real space?
- A possible explanation of up-gradient transport of PV due to turbulence spreading

- avalanching: tendency of excitation to propagate in space via local gradient change
- Joint-reflection symmetry: Γ [δ q] invariant under y \rightarrow -y and δ q \rightarrow - δ q

Key Point: form of PV flux which satisfies joint-reflection symmetry $\rightarrow \Gamma[\delta q] = \sum_{l} \alpha_{l} (\delta q)^{2l} + \sum_{m} \beta_{m} (\partial_{y} \delta q)^{m} + \sum_{n} \gamma_{n} (\partial_{y}^{3} \delta q)^{n} + \dots$

 large-scale properties : higher-order derivatives neglected small deviations : higher-order terms in δq neglected

→ Simplest approximation: $\Gamma[\delta q] = \frac{\alpha}{2} (\delta q)^2 + \beta \partial_y \delta q + \gamma \partial_y^3 \delta q$ general form of PV flux

 $\Gamma[\delta q] = \frac{\alpha}{2} (\delta q)^2 + \beta \partial_y \delta q + \gamma \partial_y^3 \delta q$

• PV equation:

 $\partial_t \delta q + \alpha \delta q \partial_y \delta q + \beta \partial_y^2 \delta q + \gamma \partial_y^4 \delta q = 0$

Kuramoto-Sivashinsky type equation

diffusion and hyper diffusion of δq

Non-linear convection of δq

- Avalanche-like transport is triggered by deviation of PV gradient
 - → PV deviation implicitly related to the local PV gradient $\delta q \rightarrow \partial_y q$
 - \rightarrow transport coefficients (functions of δq) related to the gradient $D(\delta q) \rightarrow D(\partial_{y}q)$
 - → gradient-dependent effective diffusion $\Gamma_q \sim -D(\partial_y q)\partial_y q \rightarrow -D(\delta q)\delta q$

→ Convective component of the PV flux can be related to a gradientdependent effective diffusion

 $\Gamma[\delta q] \sim \langle \delta q^2 \rangle$ $\rightarrow -D(\delta q)\delta q$ $D(\delta q) \rightarrow D_0 \delta q$

PV flux II Setting the Coefficients

Perturbation theory

• The evolution of perturbation (seed ZF) as a way to look at PV transport

ZF evolution determined by Reynolds force

 $\frac{\partial}{\partial t} \delta V_x = -\frac{\partial}{\partial y} \langle \tilde{v}_x \tilde{v}_y \rangle = \frac{\partial}{\partial y} \sum_{k < k_x k_y} \tilde{N}_k$ vorticity flux $N_k = k^2 |\psi_k|^2 / \omega_k \text{ is wave action density, for Rossby}$ wave and drift wave, it is proportional to the enstrophy density. N_k is determined by WKE: $\partial \tilde{N}$

$$\frac{\partial N}{\partial t} + \upsilon_g \cdot \nabla \tilde{N} + \delta \omega_k \tilde{N} = \frac{\partial (k_x \delta V_x)}{\partial y} \frac{\partial N_0}{\partial k_y}$$

➔ Turbulent vorticity flux derived

$$\frac{\partial}{\partial t} \delta V_q = \partial_y^2 \delta V_q \sum_k \left(\frac{k_x^2 k_y}{k^4} \right) \frac{\delta \omega_k}{(\omega_q - q \cdot \upsilon_g)^2 + \delta \omega_k^2} \frac{\partial N_0}{\partial k_y}$$

$$\frac{\kappa(q)}{q: \text{ ZF wavenumber}}$$

$$\frac{\partial}{\partial t} \delta V_q = \partial_y^2 \kappa(q) \ \delta V_q$$

$$\kappa(q) \neq \text{const}$$

$$\Rightarrow \text{ scale dependence of PV flux}$$

$$\Rightarrow \text{ non-Fickian turbulent PV flux}$$

perturbation theory 1

- A simple model from which to view κ (q):
 - Defining MFP of wave packets as the critical scale $q_c^{-1} \equiv v_g \delta \omega_k^{-1}$
 - keeping next order term in expansion of response

$$q^{-1} \gg q_c^{-1} \Rightarrow \frac{\delta \omega_k}{(q \upsilon_g)^2 + \delta \omega_k^2} \approx \frac{1}{\delta \omega_k} \left(1 - \frac{q^2}{q_c^2} \right)$$

➔ zonal growth evolution:

 $\partial_t \delta V_x = D \partial_y^2 \delta V_x - H \partial_y^4 \delta V_x$

negative viscosity and positive hyper-viscosity

> Transport coefficients (viscosity and hyper-viscosity) for relaxation models:

$$\frac{\partial \langle v_x \rangle}{\partial t} = \Gamma_q = \frac{1}{\partial_y \langle \phi \rangle} \partial_y \left[\mu \left(-\frac{\langle q \rangle \partial_y \langle q \rangle}{\left(\partial_y \langle \phi \rangle \right)^2} + \frac{\partial_y^2 \langle q \rangle}{\partial_y \langle \phi \rangle} \right) \right]$$

$$\Gamma[\delta q] = rac{lpha}{2} (\delta q)^2 + eta \partial_y \delta q + \gamma \partial_y^3 \delta q,$$

18

Discussion of D and H

- Roles of negative viscosity and positive hyper-viscosity (Real space) $\frac{\partial}{\partial t} \delta V_x = D \partial_y^2 \delta V_x - H \partial_y^4 \delta V_x$ $\frac{\partial}{\partial t} \int \frac{1}{2} \delta V_x^2 d^2 x = -D \int \left(\partial_y \delta V_x \right)^2 d^2 x - H \int \left(\partial_y^2 \delta V_x \right)^2 d^2 x$ $D < 0 \Rightarrow \gamma_{q,D} > 0 \quad \text{ZF growth (Pumper D)}$ $H > 0 \Rightarrow \gamma_{q,H} < 0 \quad \text{ZF suppression (Damper H)} \quad \text{Energy transferred to large scale ZF}$
 - D, H as model of spatial PV flux beyond over-simplified negative viscosity

$$D = Hq^{2} \text{ sets the cut-off scale}$$

$$\Rightarrow l_{c}^{2} = \sqrt{\frac{H}{|D|}}$$

$$F_{q} = \frac{1}{\partial_{y}\langle\phi\rangle}\partial_{y}\left[\mu \ \partial_{y}\left(\frac{\partial_{y}\langle q\rangle}{\partial_{y}\langle\phi\rangle}\right)\right] \Rightarrow \ell_{c} = \sqrt{\left|\frac{\langle v_{x}\rangle}{\partial_{y}\langle q\rangle}\right|}$$

 $\ell > \ell_c$: ZF energy growth \rightarrow D process dominates at large scale $\ell < \ell_c$: ZF energy damping \rightarrow H process dominates at small scale

	pseudo-fluid	plasma fluid
elements	wave-packets	charged particles (species α)
distribution function	$N_{m k}(m k,\omega_{m k})$	$f_{oldsymbol{lpha}}(oldsymbol{r},oldsymbol{v},t)$
mean free path	$ oldsymbol{v}_g /\delta\omega_{oldsymbol{k}}$	$1/n_lpha\sigma$
density	$n^w = \int N_{m k} d{m k}$	$n_{oldsymbollpha}=\int f_{oldsymbollpha}doldsymbol v$
momentum	$oldsymbol{P}^w=\intoldsymbol{k}N_{oldsymbol{k}}doldsymbol{k}$	$oldsymbol{p}_{lpha}=\int m_{lpha}oldsymbol{v}f_{lpha}doldsymbol{v}$
velocity	$oldsymbol{V}^w = rac{\int oldsymbol{v}_g N_{oldsymbol{k}} doldsymbol{k}}{\int N_{oldsymbol{k}} doldsymbol{k}}$	$oldsymbol{u}_lpha = rac{\int oldsymbol{v} f_lpha doldsymbol{v}}{\int f_lpha doldsymbol{v}} = rac{oldsymbol{p}_lpha}{m_lpha n_lpha}$

Pei-Chun Hsu and P. H. Diamond, Phys. Plasmas, 22, 032314 (2015)

perturbation theory 2

• ZF evolution:

$$\begin{aligned}
\left\langle \tilde{\upsilon}_{x}\tilde{\upsilon}_{y}\right\rangle &= \int \upsilon_{gy}k_{x}N_{k}d^{2}k \cong V_{y}^{w}P_{x}^{w} \quad \text{pseudo-momentum flux} \\
\frac{\partial}{\partial t} \langle \upsilon_{x} \rangle &= -\frac{\partial}{\partial y}V_{y}^{w}P_{x}^{w}
\end{aligned}$$
• pseudo-fluid evolution:

$$\frac{\int (WKE)\upsilon_{gy}d^{2}k}{n^{w}} \quad a = \int \frac{2\beta k_{x}^{2}}{k^{4}} \left(1 - \frac{4k_{y}^{2}}{k^{2}}\right)N_{k}dk / \int N_{k}dk \\
&\implies \frac{\partial}{\partial t}V_{y}^{w} + V_{y}^{w}\frac{\partial}{\partial y}V_{y}^{w} = -a \langle \upsilon_{x} \rangle' \quad \text{inviscid Burgers'eq. source: zonal shear}
\end{aligned}$$

 \rightarrow ZF growth rate in monochromatic limit:

$$\gamma_q = \sqrt{q^2 k_x^2 \left|\varphi_k\right|^2 \left(1 - \frac{4k_y^2}{k^2}\right)}$$

-- Instability (
$$\gamma_q$$
 real) $\rightarrow k_x^2 > 3k_y^2$

-- $\gamma_q \propto |q| \rightarrow$ convective instability

Convective transport coefficients for PV-avalanche model:

$$\Gamma[\delta q] = rac{lpha}{2} (\delta q)^2 + eta \partial_y \delta q + \gamma \partial_y^3 \delta q,$$

	PV flux	convective	viscous	hyper-viscous	coefficients
(non nonturb)	Min. enstrophy relaxation		•	•	
(non-perturb.)	\mathbf{PV} -avalanche relaxation	•	•	•	
(marturlation)	Modulational instability		•	•	$D_t(<0), H_t(>0)$
(perturbative)	Parametric instability	•			$\gamma_q(\sim q)$

$$\frac{\partial \langle v_x \rangle}{\partial t} = \Gamma_q = \frac{1}{\partial_y \langle \phi \rangle} \partial_y \left[\mu \left(-\frac{\langle q \rangle \partial_y \langle q \rangle}{\left(\partial_y \langle \phi \rangle \right)^2} + \frac{\partial_y^2 \langle q \rangle}{\partial_y \langle \phi \rangle} \right) \right]$$
$$\Gamma \left[\delta q \right] = \frac{\alpha}{2} \left(\delta q \right)^2 + \beta \partial_y \delta q + \gamma \partial_y^3 \delta q$$

• Modulational instab.

PV-avalanche

•

• Parametric instab.

$$\partial_t \delta V_x = -q^2 D \delta V_x + q^4 H \delta V_x$$

$$\gamma_q = \sqrt{q^2 k_x^2 \left|\varphi_k\right|^2 \left(1 - \frac{4k_y^2}{k^2}\right)}$$

III) Multi-scale shearing effects

 Motivation: coexistence of mean shear and zonal flow shear (different roles)

ightarrow L-H transition, the solar tachocline

Generic problem: interaction between different scale shearing fields

• Important issue: how mean shear affects the PV flux and ZF generation

Pei-Chun Hsu and P. H. Diamond, Phys. Plasmas, 22, 022306, (2015)

mean/shear

Modulational instab. w/ mean shear

Modulational instab. w/ mean shear

• characteristic method (shearing frame)

Summary

- Inhomogeneous PV mixing is identified as the fundamental mechanism for ZF formation. This study offered new approaches to calculating spatial flux of PV.
- The general structure of PV flux is studied by two *non-perturbative* relaxation models. In selective decay model, PV flux contains diffusive and hyper-diffusive terms. In PV-avalanche model, PV flux contains another convective term, which can be generalized to an effective diffusive transport.
- The transport coefficients are derived using perturbation theory. In modulational instability analysis for a broadband spectrum, a negative viscosity and a positive hyper-viscosity, which represents ZF saturation mechanism, are derived. In parametric instability analysis for a narrow spectrum, a convective transport coefficient is obtained.
- Important issues addressed in our models includes PV staircase, turbulence spreading, avalanche-like transport, characteristic scales.
- The effect of the mean shear on ZF formation is studied. ZF growth rate and the PV flux are shown to decreases with mean shearing rate. *Framework of PV transport for systems with multi-scale shearing fields is established.*

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy Office of Science under Award Number DE-FG02-04ER54738.